lower semicontinuous - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

lower semicontinuous - translation to ρωσικά

PROPERTY OF FUNCTIONS WEAKER THAN CONTINUITY
Semicontinuous; Semicontinuity; Semi-continuous; Lower semi-continuous; Upper semi-continuous; Lower semicontinuous; Upper semicontinuous; Semi-continuous function; Semi-continuous mapping; Semicontinuous function; Upper-semicontinuous; Upper semicontinuity; Lower semicontinuity; Upper semi-continuity; Lower semi-continuity
  • A lower semicontinuous function that is not upper semicontinuous. The solid blue dot indicates <math>f\left(x_0\right).</math>
  • An upper semicontinuous function that is not lower semicontinuous. The solid blue dot indicates <math>f\left(x_0\right).</math>

lower semicontinuous         

общая лексика

полунепрерывный снизу

lower semi-continuous         

общая лексика

полунепрерывный снизу

lower semicontinuity         

математика

полунепрерывность снизу

Ορισμός

second chamber
The second chamber is one of the two groups that a parliament is divided into. In Britain, the second chamber is the House of Lords. In the United States, the second chamber can be either the Senate or the House of Representatives.
N-SING

Βικιπαίδεια

Semi-continuity

In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f {\displaystyle f} is upper (respectively, lower) semicontinuous at a point x 0 {\displaystyle x_{0}} if, roughly speaking, the function values for arguments near x 0 {\displaystyle x_{0}} are not much higher (respectively, lower) than f ( x 0 ) . {\displaystyle f\left(x_{0}\right).}

A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x 0 {\displaystyle x_{0}} to f ( x 0 ) + c {\displaystyle f\left(x_{0}\right)+c} for some c > 0 {\displaystyle c>0} , then the result is upper semicontinuous; if we decrease its value to f ( x 0 ) c {\displaystyle f\left(x_{0}\right)-c} then the result is lower semicontinuous.

The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899.

Μετάφραση του &#39lower semicontinuous&#39 σε Ρωσικά